If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-17600=0
a = 1; b = 5; c = -17600;
Δ = b2-4ac
Δ = 52-4·1·(-17600)
Δ = 70425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{70425}=\sqrt{225*313}=\sqrt{225}*\sqrt{313}=15\sqrt{313}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-15\sqrt{313}}{2*1}=\frac{-5-15\sqrt{313}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+15\sqrt{313}}{2*1}=\frac{-5+15\sqrt{313}}{2} $
| 11=(2w)-3 | | h+35=164 | | 2(x-7)+5x=21 | | 3x+2x=180-x | | 3x+20+4x-10=18 | | s+42=7s | | -3(r+58)=57 | | a+15/15=5 | | p=2(62)+2(88) | | 7/(x-6)=3 | | 8.2x+14.2=-2.4-1.4x | | -60-10x=5x-105 | | 7(u-86)=28 | | 3x+93-2x=15x-2(x-5) | | 12x-5=8x-53 | | 5x3x+93-2x=15x-2(x-5) | | 14x-3=67 | | -9=-11+6/b | | 14x+10=8-53 | | 4+6^2x(18-13)÷18+9=33 | | 20t+17=17 | | 6x-10x+7=47 | | -9=-11+6b | | x-57=-89 | | 6f-17=15f+19-13f | | h(3)=550(0.4)^3 | | -2=d+8 | | 5x-10=7x+6 | | v-19=20-12v | | 4x+7x-8=14 | | 160=(x)(x+6) | | 8-3x=-74 |